Chapter 1. The Tractrix and Similar Curves

W. Gander, S. Barton, and J. Hrebicek

1.1 Introduction

In this section we will use MATLAB to solve two similar systems of differen-
tial equations. First we generalize the classical tractrix problem to compute
the orbit of a toy pulled by a child, and then we compute the orbit of a dog
which attacks a jogger. We also show how the motions may be visualized with
MATLAB.

1.2 The Classical Tractrix

In the 17th century Gottfried Wilhelm Leibniz discussed the following problem,
see [2, 1]. Given a watch attached to a chain, what is the orbit in the plane
described by the watch as the endpoint of the chain is pulled along a straight
line?

Let a be the length of the chain. The problem is easily solved if we assume
that the point-like watch is initially on the z-axis at the point (a,0), and that
starting at the origin we pull in the direction of the positive y-axis, [2], (cf.
Figure 1.1).

FIGURE 1.1. Classical Tractrix.




2 W. Gander, S. Bartori, and J. Hrebicek

From Figure 1.1 we immediately obtain the following differential equation
for the unknown function y(z):

, a2 — 12

y=-——" (1.1)

To solve Equation (1.1) we only need to integrate:
> y:= -Int(sqrt(a~2-x"2)/x, x) + c;
JaZ — 12
Y= — / ——dr+c
x
> y:=simplify(value(y), symbolic);
y:=—va2—22+aln(2)+aln(a)+aln(a++va —zva+z)—aln(z)+c (1.2)
MAPLE does not include the constant when performing indefinite integration.
So we added an integration constant c. We can determine its value by using
the initial condition y(a) = 0:

> c:= solve(subs(x=a, y), c);

¢:=—aln(2) —aln(a)

Therefore the solution to our problem is
> y:= combine(y,1ln, symbolic);

N —)
y:=—vVa®—122+aln (M) .
x

Let us now assume that the object to be pulled is initially on the y-axis at
the point (0,a) and that we start pulling again at the origin, but this time in
the direction of the positive z-axis.

Consider the point (z,y(z)) on the orbit of the object. The endpoint of the
chain on the z-axis is at the point (z —y(z)/y'(z),0), that is where the tangent
intersects the z-axis (this is the same point which would be obtained for one
step of Newton’s iteration!). Therefore, the condition that the chain has the
constant length a, leads to the differential equation

+y(2)* = d?, (1.3)

which can no longer be solved directly by quadrature. Therefore we need to call
the differential equation solver dsolve,

> unassign(’y’);

> eq = (y(x)/diff(y(x), x))°2 + y(x)°2 = a"2;

> p := [dsolve(eq, y(x))]:
> pl:=simplify(p,symbolic);



Chapter 1. The Tractrix and Similar Curves 3
pl =
[a: —v/=y(x)? +a? + aln(2) + aln(a)
—|—aln(a +4/a —y(z) \/a +y(z)) — aln(y(a:)) - C1=0,
z+4/—y(x)? +a? —aln(2) — aln(a)
—aln(a + \/a - y(z) \/a-i- y(x)) + aln(y(m)) - _C1 = O]

and we obtain two solutions. Because of the initial condition
> p2:=subs({x=0,y(x)=a},pl);

p2 :=[aln(2) +aln(ea) — _C1 =0, —aln(2) — aln(a) — -C1 = 0]

we obtain two equations which we solve for the two constants:
> p3:=map(u->solve(u,_C1),p2);

p3 :=[aln(2) +aln(a), —aln(2) —aln(a)].

The correct answer to our problem is the function with y(z) > 0 and y'(z) < 0.
This is the one with the same integration constant ¢ as before. We choose
this solution by comparing the two lists (solutions and constants) with the zip
function:

> zip((u,v)->“if ‘ (u=c,subs(_Cl=c,v),NULL),p3,p1) [1;

x —/—y(x)? + a? —i—aln(a—i— \/a —y(z) \/a—i-y(x)) - aln(y(x)) =0

and obtain an equation for the solution y(x).

We could, of course, have obtained this equation also by interchanging the
variables z and y in Equation (1.2). Note that it would be difficult to solve
Equation (1.3) numerically, since for x = 0 we have the singularity y'(0) = occ.

1.3 The Child and the Toy

Let us now solve a more general problem and suppose that a child is walking
on the plane along a curve given by the two functions of time X (¢) and Y'(¢).

Suppose now that the child is pulling or pushing some toy, by means of a
rigid bar of length a. We are interested in computing the orbit of the toy when
the child is walking around. Let (z(t),y(¢)) be the position of the toy. From
Figure 1.2 the following equations are obtained:

1. The distance between the points (X (¢), Y (¢)) and (z(t), y(t)) is always the
length of the bar. Therefore

(X —z2)? + (Y —y)? =d’. (1.4)



4 W. Gander, S. Bartori, and J. Hrebicek

FIGURE 1.2. Velocities v¢ and vr.

[x(0).y(®)]

[X(0),Y (0]

ey

velocity of child 7(:

velocity of toy 7T

2. The toy is always moving in the direction of the bar. Therefore the dif-
ference vector of the two positions is a multiple of the velocity vector of
the toy, vo = (&, 9)":

(if - ;) = /\(z) with A > 0. (1.5)

3. The speed of the toy depends on the direction of the velocity vector v¢
of the child. Assume, e.g., that the child is walking on a circle of radius
a (length of the bar). In this special case the toy will stay at the center
of the circle and will not move at all (this is the final state of the first
numerical example, see Figure 1.3).

From Figure 1.2 we see that the modulus of the velocity v of the toy is
given by the modulus of the projection of the velocity v of the child onto
the bar.

Inserting Equation (1.5) into Equation (1.4), we obtain

a

a :1:) (X = x) (1.6)
Err\) T\ ) |
We would like to solve Equation (1.6) for # and ¢. Since we know the modulus

of the velocity vector of the toy |vy| = |vo|cosa, see Figure 1.2, this can be
done by the following steps:

o =@ +9%) — A=

Therefore

e Normalize the difference vector (X —z,Y —y)” and obtain a vector w of
unit length.

e Determine the projection of vg = (X , Y)T onto the subspace generated
by w. This is simply the scalar product viw, since viw = |v¢||w|cos o
and |w| = 1.

o vi = (,9)" = (vew)w.



Chapter 1. The Tractrix and Similar Curves 5

Now we can write the function to evaluate the system of differential equations
in MATLAB (see Algorithm 1.1).

ALGORITHM 1.1. Function f.

function zs = f(t,z)

%

[X Xs Y Ys] = child(t);
v =[Xs; Ys];

w =[X-z(1); Y-z(2)];
w = w/norm(w);
zs = (v7*w)*w;

The function £ calls the function child which returns the position (X (¢), Y (¢))
and velocity of the child (Xs(t),Ys(t)) for a given time t. As an example
consider a child walking on the circle X (¢t) = 5cost; Y (t) = 5sint. The corre-
sponding function child for this case is:

ALGORITHM 1.2. Function Child.

function [X, Xs, Y, Ys] = child(t);
yA
X
Xs

bxcos(t); Y
-6xsin(t); Ys

5%sin(t);
5xcos(t);

MATLAB offers two M-files ode23 and ode45 to integrate differential equations.
In the following main program we will call one of these functions and also define
the initial conditions (Note that for ¢ = 0 the child is at the point (5,0) and
the toy at (10,0)):

>> % mainl.m

>> y0 = [10 0]7;

>> [t y] = ode45(’£’,[0 100],y0);

>> clf; hold on;

>> axis([-6 10 -6 10]);

>> axis(’square’);

>> plot(y(:,1),y(:,2));
If we plot the two columns of y we obtain the orbit of the toy (cf. Figure 1.3).
Furthermore we add the curve of the child in the same plot with the statements:

> t = 0:0.05:6.3

>> [X, Xs, Y, Ys] = child(t);
>> plot(X,Y,?:?)

>> hold off;



6 W. Gander, S. Bartori, and J. Hrebicek

Fi1GURE 1.3. Child Walks on the Circle.

Note that the length of the bar a does not appear explicitly in the programs;
it is defined implicitly by the position of the toy, (initial condition), and the
position of the child (function child) for t = 0.

We conclude this section with some more examples. Let the child be walking
along the graph of a sine function: X (t) = ¢ and Y (¢) = 5sint. The child’s
curve is again plotted with a dotted line. With the initial conditions z(0) = 0
and y(0) = 10 we obtain Figure 1.4.

In the next example, the child is again walking on the circle X (¢) = 5cost,
Y (t) = 5sint. With the initial condition z(0) = 0 and y(0) = 10, we obtain a
nice flower-like orbit of the toy (cf. Figure 1.5).

1.4 The Jogger and the Dog

We consider the following problem: a jogger is running along his favorite trail
on the plane in order to get his daily exercise. Suddenly, he is being attacked by
a dog. The dog is running with constant speed w towards the jogger. Compute
the orbit of the dog.

The orbit of the dog has the property that the velocity vector of the dog
points at every time to its goal, the jogger. We assume that the jogger is
running on some trail and that his motion is described by the two functions X ()
and Y (¢).

Let us assume that for ¢ = 0 the dog is at the point (zg, o), and that at time ¢
his position will be (z(t),y(t)). The following equations hold:

1. #? + y? = w* The dog is running with constant speed.

2. The velocity vector of the dog is parallel to the difference vector between






8 W. Gander, S. Bartori, and J. Hrebicek

the position of the jogger and the dog:

T X —x
] = with A > 0.
<y> (Y - y)

If we substitute this in the first equation we obtain
X—z
Y-y

w

et
Y—y
Finally, substitution of this expression for A in the second equation yields the
differential equation of the orbit of the dog:

T w X—z
)= = . 1.7
0 - Tean-o) "
Again we will make use of one of the M-files ode23.m or ode45.m to inte-
grate the system of differential equations. We notice that the system (1.7) has
a singularity when the dog reaches the jogger. In this case the norm of the
difference vector becomes zero and we have to stop the integration. The above
mentioned MATLAB functions for integrating differential equations require as
input an interval of the independent variable. MATLAB provides also the possi-
bility to define another termination criterion for the integration, different from
a given upper bound for the independent variable. It is possible to terminate
the integration by checking zero crossings of a function. In our example one
would like to terminate integration when the dog reaches the jogger, i.e. when
H(X —z,Y — y)TH becomes small. In order to do so we have to add a third input

2
wr=3+ 9t = \?

This equation can be solved for A:

and two more output parameters to the M-function dog.m (see Algorithm 1.3).
The integrator ode23 or ode45 calls the function in two ways: The first one
consists of dropping the third parameter. The function then returns only the
parameter zs: the speed of the dog. In the second way the keyword ’events’
is assigned to the parameter flag. This keyword tells the function to return the
zero-crossing function in the first output zs. The second output isterminal is
a logical vector that tells the integrator, which components of the first output
force the procedure to stop when they become zero. Every component with
this property is marked with a nonzero entry in isterminal. The third output
parameter direction is also a vector that indicates for each component of zs
if zero crossings shall only be regarded for increasing values (direction = 1),
decreasing values (direction = -1) or in both cases (direction = 0). The
condition for zero crossings is checked in the integrator. The speed w of the
dog must be declared global in dog and in the main program. The orbit of the
jogger is given by the M-function jogger.m.



Chapter 1. The Tractrix and Similar Curves 9

ALGORITHM 1.3. Function Dog.

function [zs,isterminal,direction] = dog(t,z,flag);
)
global w % w = speed of the dog
X= jogger(t);
h= X-z;
nh= norm(h) ;
if nargin < 3 | isempty(flag) % normal output
zs= (w/nh)x*h;

else
switch(flag)
case ’events’ Y at norm(h)=0 there is a singularity
zs= nh-1le-3; % zero crossing at pos_dog=pos_jogger

isterminal= 1; % this is a stopping event
direction= 0; % don’t care if decrease or increase
otherwise
error ([’Unknown flag: ’ flag]);
end
end

The main program main2.m defines the initial conditions and calls ode23 for
the integration. We have to provide an upper bound of the time ¢ for the

integration.
>> % main2.m
>> global w
>> yO = [60;70]; % initial conditions, starting point of the dog
>> w = 10; % w speed of the dog
>> options= odeset(’RelTol’,le-5,’Events’,’on’);

>>
>>
>>
>>
>>

>>
>>
>>
>>
>>

[t,Y] = ode23(’dog’,[0,20],y0,0options);
clf; hold on;

axis([-10,100,-10,70]);
plot(Y(:,1),Y(:,2));

J=[1;

for h= 1: length(t),

w = jogger(t(h));
J =103 wl;
end;

plot(J(:,1), J(:,2),’:?,’Color’,’red’);

The integration will stop either if the upper bound for the time ¢ is reached or
if the dog catches up with the jogger. For the latter case we set the flag Events
of the ODE options to *on’. This tells the integrator to check for zero crossings
of the function dog called with flag = ’events’. After the call to ode23 the
variable Y contains a table with the values of the two functions z(¢) and y(¢).
We plot the orbit of the dog simply by the statement plot(Y(:,1),Y(:,2)).



10 W. Gander, S. Bartori, and J. Hrebicek

In order to show also the orbit of the jogger we have to recompute it using the
vector ¢t and the function jogger.

Let us now compute a few examples. First we let the jogger run along the
T-axis:

ALGORITHM 1.4. First Jogger Example.

function s = jogger(t);
s = [8xt; 0];

In the above main program we chose the speed of the dog as w = 10, and since
here we have X (t) = 8t the jogger is slower. As we can see in Figure 1.6 the
dog is catching the poor jogger.

If we wish to indicate the position of the jogger’s troubles, (perhaps to build
a small memorial), we can make use of the following file cross.m

ALGORITHM 1.5. Drawing a Cross.

function cross(Cx,Cy,v)

% draws at position Cx,Cy a cross of height 2.5v
% and width 2#*v

Kx = [Cx Cx Cx Cx-v Cx+v];

Ky = [Cy Cy+2.5%v Cy+1.5%v Cy+1.5%v Cy+1.5%v];
plot (Kx,Ky);

plot(Cx,Cy,’0’);

The cross in the plot was generated by appending the statements to the main
program.

>> p = max(size(Y));

>> cross(Y(p,1),Y(p,2),2)

>> hold off;

The next example shows the situation where the jogger turns around and
tries to run back home:

ALGORITHM 1.6. Second Jogger Example.

function s = joggerl(t);

/)

if t<6, s = [8xt; 0];

else s = [8%(12-t) ;0];
end

However, using the same main program as before the dog catches up with the
jogger at time ¢t = 9.3 (cf. Figure 1.7).



Chapter 1. The Tractrix and Similar Curves

FIGURE 1.6. Jogger Running on the Line y = 0.

_10 I I I I I I I I
0

FI1GURE 1.7. Jogger Returning Back.

_10 I I I I I
0

11



12

W. Gander, S. Bartori, and J. Hrebicek

Let us now consider a faster jogger running on an ellipse

ALGORITHM 1.7. Third Jogger Example.

function s = jogger2(t);

s = [ 10+20%*cos(t)
20 + 15*sin(t)];

If the dog also runs fast (w = 19), he manages to reach the jogger at time
t = 8.97 (cf. Figure 1.8). We finally consider an old, slow dog (w = 10). He
tries to catch a jogger running on a elliptic track. However, instead of waiting
for the jogger somewhere on the ellipse, he runs (too slow) after his target, and
we can see a steady state developing where the dog is running on a closed orbit
inside the ellipse (cf. Figure 1.9).

1.5 Showing the Motions with MATLAB

It would be nice to show simultaneously the motions of the child and the toy
or the dog and the jogger instead of just plotting statically their orbits. This is
possible using the handle graphics commands in MATLAB. The main program
for the child and its toy now looks as follows:

>>
>>
>>
>>
>>

>>
>>
>>
>>

>>
>>
>>
>>
>>
>>

>>
>>
>>
>>
>>

% main3.m
yo = [0 20]°;

options= odeset(’RelTol’,1e-10);
[t y1 = oded45 (°f’, [0 40], yO, options);
= child (t);

X, Xs, Y, Ys]

xmin = min (min (X), min

xmax = max (max (X), max
ymin = min (min (Y), min
ymax = max (max (Y), max

clf; hold on;

(v
(y
(y
(y

axis ([xmin xmax ymin ymax]);
% axis(’equal’);
title (’The Child and the Toy.’);

line (’Color’, ’yellow’, ’EraseMode’, ’xor’, ...

stickhandle =

’LineStyle’, ’-7,

for k = 1:length(t)-1,
plot ([X(k), X(k+1)1, [Y(k), Y(k+1)], ’-’,
’Color’, ’yellow’, ’EraseMode’, ’none’);
plot ([yk,1), y&k+1,1)]1, [yk,2), y(k+1,2)]1, -7,
’Color’, ’green’, ’EraseMode’, ’none’);

NN AN
. . .

*
*
.

s

1))
DN;
2)));
2)));

’XData’, [1, ’YData’, [1);



Chapter 1. The Tractrix and Similar Curves

60

50

20

10

FI1GURE 1.8. Jogger on an Ellipse.

0
-20

60

20

FI1GURE 1.9. Slow Dog.

13



14 W. Gander, S. Bartori, and J. Hrebicek

>> set (stickhandle, ’XData’, [X(k+1), y(k+1,1)],
>> ’YData’, [Y(k+1), y(k+1,2)]);

>> drawnow;

>> end;

>> hold off;

We define the variable stickhandle as a handle to a graphical object of type
line associated with the stick. In the loop, we draw new segments of the child
and toy orbits and move the position of the stick. The drawnow command forces
these objects to be plotted instantaneously. Therefore, we can watch the two
orbits and the stick being plotted simultaneously.

In the case of the jogger and the dog we do not even have to define a handle.
All we have to do is to draw the segments of the two orbits in the proper
sequence:

>> % maind.m

>> global w;
>> y0 = [60; 70]; % initial conditions, starting point of the dog
>> w = 10; % w speed of the dog

>> options= odeset(’RelTol’,le-5,’Events’,’on’);
>> [t,Y] = ode23 (’dog’, [0 20], yO, optiomns);

>> J=[1;

>> for h= 1:length(t),

>> w = jogger(t(h));

> J=[J; wl;

>> end

>> xmin = min (min (Y (:, 1)), min (J (:, 1)));
>> xmax = max (max (Y (:, 1)), max (J (:, 1)));
>> ymin = min (min (Y (:, 2)), min (J (:, 2)));
>> ymax = max (max (Y (:, 2)), max (J (:, 2)));

>> clf; hold on;

>> axis ([xmin xmax ymin ymax]);

>> % axis (’equal’);

>> title (’The Jogger and the Dog.’);

>> for h=1:length(t)-1,
>>  plot ([Y(h,1), Y(h+1,1)] , [Y(h,2), Y(h+1,2)], ’-7,

>> ’Color’, ’yellow’, ’EraseMode’,’none’);
>> plot ([J(h,1), J(+1,1)] , [J(h,2), J(h+1,2)], ’:?,
>> ’Color’, ’green’, ’EraseMode’, ’none’) ;

>> drawnow;
>> pause(1);
>> end

>> hold off;



Chapter 1. The Tractrix and Similar Curves 15

1.6 Jogger with Constant Velocity

We continue in this section with the elliptical orbit of the jogger. If we describe
the ellipse as in Algorithm 1.7 and consider ¢ as the time variable the velocity
of the jogger will not be constant. Let s(¢) be the parameter for the description
of the ellipse with center in (my,my) and main semi-axes a and b:

X(s) =mq +acos(s), Y(s)=my+ bsin(s)

We want to determine s as a monotonic increasing function of the time ¢ such
that for equidistant times ¢; the points on the ellipse X (s(¢;)), Y (s(t;)) are also
equidistant on the border of the ellipse. An equivalent condition is that the
velocity of the jogger V(t) is constant:

- \l (W)Q + (%)2 — const. (18)

Now s(t) can be computed by first solving Equation (1.8) for ds/dt:

> restart;
> Xe :=ml + a*cos(s(t)): Ye := m2 + b*sin(s(t)):
> Ve2 := diff(Xe, t)~2 +diff(Ye, t)~2 =V"2;

Vo2 i= o sin (s () {1 (t>)2 # os (s ) (5o (t>)2 _ v

> diff(s(t),t) = solve(Ve2, diff(s(t), t));
d
25 () = {% —%} , %1 = /(sin (s (1)))? a2 — b2 (sin (s (1)) + b2
We have to select the first expresion, because the the jogger moves counter-
clockwise. The differential equation has no analytical solution so we will solve
it numerically with MATLAB. Together with the two differential equations (1.7)
we obtain a system of three coupled differential equations:

X(t) my + acos(s(t))
Y() = mo+bsin(s(t))
#(t) = c(X(t)—=z(t))
y(t) = (Y (t) —y(®))
() = -
\/a25in(s(t))2 + b2 cos(s(t))?

w
e
Y-y

This system is implemented as function fkt (Algorithm 1.8). The corresponding
main program is given as Algorithm 1.9.




16 W. Gander, S. Bartori, and J. Hrebicek

ALGORITHM 1.8.
Function fkt for the Jogger with Constant Velocity.

function [ydot,isterminal,direction] = fkt(t,y,flag)
% system of differential equations

% for the jogger-dog problem

% where the jogger runs with constant

% velocity on an ellipse

global a bmc w

A = cos(y(3)); B = sin(y(3));
X =m(1) + axA; Y = m(2) + bxB;
h = [X;Y] -y(1:2); nh = norm(h);

zs = (w/nh)x*h;

if nargin < 3 | isempty(flag) % normal output
ydot = [zs;c/sqrt((a*B) "2+(b*A)~2)];
else
switch(flag)
case ’events’ % at norm(h)=0 there is a singularity
ydot= nh-(1le-3); % zero crossing at pos_dog=pos_jogger

isterminal= 1; % this is a stopping event
direction= O; % don’t care if decrease or increase
otherwise
error([’Unknown flag ’’’ flag ’’’.°]);
end
end

To compare the results with the previous computations we choose the constant
in Equation (1.8) as the average jogger velocity of the example in Section 1.4:

— 2 13 L
VEVt:—/ V) dt = = .
== [ V=3
> T := 2%Pi:
> L := evalf(4*int(sqrt(20°2*sin(f) "2 + 15"2*cos(f)~2),

> f = 0..Pi/2));
>V := evalf(L/T);

L :=110.5174608

V :=17.58940018

If we execute Algorithm 1.9 we notice that the dog catches the jogger at time
t = 8.22834. This is a little earlier than in Section 1.4.

1.7 Using a Moving Coordinate System

In this section we will use a Cartesian coordinate system to describe the position
of the child respectively the jogger. The position of the toy respectively the dog



Chapter 1. The Tractrix and Similar Curves 17

ALGORITHM 1.9.
Main Program for the Jogger with Constant Velocity.

>> % mainb.m
>> global abmc w
>> a = 20; b = 15; % semi-axes

>> m = [10;20];
>> ¢ = 17.58940018; % constant velocity of jogger
>> w = 19; Y% velocity of dog

>> yo = [60, 70, 0]’; % ini. cond., starting point of the dog

>> options= odeset(’AbsTol’,le-5,’Events’,’on’);

>> [t,Y]= ode23 (’fkt’, [0 20], yO, optioms);

>> cl1lf; hold on;

>> axis ([-10 70 -10 70]1);

>> % axis (’equal’);

>> title (’The Jogger Runs with Constant Velocity.’);
>> p = length(t)-1;

>> for h=1:p

>> plot ([Y(h,1), Y(h+1,1)] , [Y(h,2), Y(h+1,2)], -2, ...
>> ’Color’, ’yellow’, ’EraseMode’,’none’);

>> 81 =Y(h,3); s2 = Y(h+1,3);

>> X1 = m(1) + axcos(sl); Y1 = m(2) + bxsin(sl);

>> X2 = m(1) + a*cos(s2); Y2 = m(2) + bxsin(s2);

>> plot ([X1, x2] , [Y1, Y21, °:’,

>> ’Color’, ’green’, ’EraseMode’,’none’);

>> drawnow;

>> end;

>> cross(Y(p,1),Y(p,2),2);

>> hold off;

will be described in a moving polar coordinate system, see Figure 1.10. The
origin of the moving system is the current position of the child respectively
jogger. The current positions of the toy or the dog are thus given by the
distance p(t) and the polar angle ¢(¢).

If [X(t), Y(t)] describe the current child/toy position then the position of
the jogger/dog in Cartesian coordinates [z(t), y(t)] is

z(t) = X(8) + p(t) cos(6(t)),  y(t) =Y (t) + p(t)sin(¢(t)).  (1.9)

We want to express the system of differential equations (1.6) respectively (1.7)
in the new variables p(t) and ¢(¢). By doing so we will obtain a transformed
system of differential equations for the functions p(t) and ¢(t).



18 W. Gander, S. Bartori, and J. Hrebicek

FIGURE 1.10. The moving Coordinate System, [p(t), ¢(t)]

y(® [x(t), y(®)

p()
)
X0, YOI\ gy

Y(t)

[0, 0] X(t) x(t) X

It is interesting to note that both systems are special cases of

(3:) VETE (X _ m)
0] X—z — :
Y H(Y—y) ‘ Y=y
If we keep the velocity constant /42 + y? = w = const. then the system (1.10)
describes the jogger/dog problem. We obtain on the other hand the equations
for the child/toy problem if the distance is constant:

0=|23)

Since for the child/toy problem p(t) = const., we expect that in polar coordi-
nates the system will simplify to only one differential equation for ¢(¢). We will
make this transformation with MAPLE.

(1.10)

‘ = a = const.

1.7.1 Transformation for Jogger/Dog
We begin by defining the system (1.7):

> restart;
> S(t) := sqre((X(t) - x(£))"2 + (Y(t) - y(£))~2):

> rx := diff(x(t), t) = Wx(X(t) - x(£))/S(t);
> ry := diff(y(t), t) = Wx(Y(t) - y(£))/S(t);
e Lo = W (X (t) — = (1))
dt VX @) =z @)+ (Y (8) — y (1)’
_d W (Y (t) =y ()
T VE ) =2 0)”+ (Y (1) —y (1)’



Chapter 1. The Tractrix and Similar Curves 19

Now we introduce the transformation of the functions and their derivatives:

> Rx := x(t) = X(t) + rho(t)*cos(phi(t)):
> Ry := y(t) = Y(t) + rho(t)*sin(phi(t)):
> Vx := diff(Rx, t); Vy := diff(Ry, t);
Voi= Loty = 2X (1) + < (®) ) cos (6 (1) = p (B)sin (6 (1)) o (1
vi=w(t) = 7P coS p(t) sin p
Vyi= Sy = 2y )+ (o)) sin (6 (1)) + p (£) cos (6 () 26 (1)
Y T w dt” P dt
We substitute and simplify the result:
> gx := subs(Vx, rx): qy := subs(Vy, ry):
> gx := simplify(subs(Rx, Ry, gx), symbolic);
> qy := simplify(subs(Rx, Ry, qy), symbolic);
qr =
d d d
CX (1) + 5o 1)) cos (6(1) — p (1) sin (6 (1)) -6 (1) = ~W cos (6 (1)
qy ‘=
d d ) d .
S () + (S p(1)) sin (6 (1) + (1) cos (6 (1) 6 (1) = =W sin (6 (1)

Finally we solve for the derivatives of p(t) and ¢(¢):

> Dsys := solve({gx, qy}, {diff(rho(t), t), diff(phi(t), t)});

Days = | $5p(0) = —cos (6(0) £X () =W = (47 () sn 6 (0).

—cos (¢ (t )) Y (t) + ( X (t )) sin (¢ (2)) }

d

> Dradial:=select(has,Dsys,diff (rho(t),t))[];
> Daxial:=select (has,Dsys,diff (phi(t),t))[];

Dradial := %p (t) = —cos (¢ (1)) %X (t)y—w — <%Y (t)) sin (¢ (¢)) (1.11)
—cos (¢ () &Y (1) + (X (1)) sin (¢ (1))
p(t)

The resulting system of differential equations is somewhat simpler but cannot
be solved analytically. We will therefore not continue the discussion.

al e Lo —
Dazial := dtqﬁ(t) = (1.12)



20 W. Gander, S. Bartori, and J. Hrebicek

1.7.2 Transformation for Child/Toy

As before we define the system of differential equations:

> restart;

> Rx := x(t) = X(t) + a*cos(phi(t)):

> Ry := y(t) = Y(t) + a*sin(phi(t)):

> Vx := diff(Rx, t): Vy := diff(Ry, t):

We will introduce the following substitution RW for the velocity of the toy:

> RW := W(t) = subs(Vx, Vy, sqrt(diff(x(t), t)"2
> + diff(y(t), t)°2));

RW =W (t) =

J (@ O =m0 o0) + (G 0 +acomo0) o0

The following statements generate the system (1.6)

> gx = diff(x(t), t) = W(t)/a*x(X(t) - x(t));
> qy := diff(y(t), t) = W(t)/a*x(Y(t) - y(t));
d W (t) (X (t) — (1))
= — t) =
gz = — 2 (1) "
_d o WEHIE)-y@)

We introduce the new variables and the derivatives by eliminating z(¢) and y(t).
Furthermore we squared both equations to get rid of the square root.

> gx
> qy :

subs(RW, Vx, Rx, map(u -> u"2, qgx));
subs(RW, Vy, Ry, map(u -> u"2, qy));



Chapter 1. The Tractrix and Similar Curves 21
We want to show that both equations are the same, and that the system reduces
to only one differential equation for ¢(¢). To do this we make the following

substitution:

> Subst := [rhs(Vx) = A, rhs(Vy) = B, phi(t) = Fl;

Subst := | X () — asin (¢ () L0 ()= 4,
&Y () +acos (4 (1) 4o (t)= B,
¢ (1)=F |

> qlx := expand(subs(Subst, gx));
> qly := expand(subs(Subst, qy));

qlz = A* = cos(F)? A? + cos(F)* B?
qly = B? = sin(F)* A +sin(F)? B2

In order to see that indeed the equations are the same we simplify them by
collecting A and B terms.

> [map (u->simplify(sqrt( u-cos(F)"2xA~2), symbolic),qlx),
> map(u->simplify(sqrt(-u+sin(F) "2*A~2+B~2) ,symbolic),qly)];

[A\/l—cos(F)chos(F) B, A1/1 — cos (F)* = cos (F) B].

Now we see that they are identical. We continue the computation with the first
one and remove the squares and the substitution. By solving for the derivative
of ¢(t) we obtain the desired differential equation:

> Q1l:=subs(sqrt(1-cos(F)~2)=sin(F),%[1]);
Q1 :=sin(F) A = cos(F) B

> BackSubst := map(u -> rhs(u) = lhs(u), Subst);
BackSubst := | A=24X (t) — asin (¢ () Lo (1) ,
B=2Y (t) + acos (¢ (t)) ¢ (t)
F=6(t)]

> Q2 := subs(BackSubst, Q1);
Q2 = sin (¢ (1)) (X (1) — asin (6 (1)) 56 (1))
= cos (¢ (1)) (£Y (£) +acos (¢ (1)) 6 (1))

> Daxial := diff(phi(t), t) =
> simplify(solve(Q2, diff(phi(t), t)));
Dasial i L g1y _ SO 0) EX (1) —cos (¢(1) &Y (1)
dt a
It is interesting to note that we would obtain the same equation if we would
replace the function p(t) by the constant a in the differential equation for ¢(t)
for the jogger/dog problem.




22 W. Gander, S. Bartori, and J. Hrebicek

1.8 Examples

Since the system of differential equations has simplified into one equation we
may hope to obtain analytical solution for certain cases. We begin with the
first example where the child is walking on a circle.

> Child_Subst := X(t) = R*cos(omega*t), Y(t) = R*sin(omega*t);
Child _Subst := X(t) = Rcos(wt), Y(t) = Rsin(wt)

> Das := subs(Child_Subst, Daxial);
—sin (¢ (t)) Rsin (wt) w — cos (¢ () Rcos (wt) w
a

Das := %qﬁ (1) =

> Das := combine(Das, trig);

Das := %qﬁ (t)=—

Depending of comparison of the lengths of @ and R we may receive solution of
the the following forms:

Rw cos (—¢ (t) +wt)

> Soll := dsolve(Das, phi(t)) assuming a>R;
Va2 — R?(_C1 -1

<w )
Soll:=¢(t)=wt+2arctan 2; va? — R? (1.13)
a ju—

> S012 := dsolve(Das, phi(t)) assuming R<a;

N =@ (C1 -
(gL

2a

—az| (114
— = a | (1.14)

Sol2:=¢(t) =wt—2arctan

The functions ¢(¢) (1.13), (1.14) are given by an explicit expresion. Therefore
MAPLE would be able to solve the differential equation with given initial con-
dition ¢(0) = a. Solving the differential equation Das with an initial conditions
returns instead of (1.13) a much longer expresion. We abstain from showing it
here.

> SuCl :
> SuC2 :

_C1
_C1

solve(subs(t = 0, phi(0) alpha, Soll),_C1);
solve(subs(t = 0, phi(0) = alpha, So0l2),_Cl);

tan (/2) (a — R)) a

SuC1 :=_C1 = 2 arctan

/a2 — R2
tan («/2) (a—R)) a

SuC?2 := —_C1 = 2arctanh (
R _ o2



Chapter 1. The Tractrix and Similar Curves 23
To reproduce the orbit given in Figure 1.3 we set oo = 0:

> So0l10 :
> S0120 :

eval (subs (alpha=0,S011));
eval (subs(alpha=0,5012));

2 _ 2 2 _ 2
Sol10 := ¢ (t) = wt + 2 arctan (tanh (WX/R : t> e

Furthermore we want to set the length of the bar a equal to the radius of
the circle R. This is not possible by a simple substitution—we rather need to
compute the limit ¢ — R: In this case both results (1.15) and (1.16) are equal.

Sol20 := ¢ (t) =wt — 2 arctan <tan (

> limit(rhs(S0l110), a = R), limit(rhs(S0l120), a = R);
wt — 2 arctan (wt), wt— 2 arctan (wt)

> S0l10 := phi(t)= %[1]:

> Toy := [x(t), y(t)]:

> Toy_Plot := subs(Rx, Ry, Child_Subst, SolO, omega = 1,
> a=R, R=5, [Toy[l, t = 0..40]);

Toy_Plot := [5 cos(t) + 5 cos(—2 arctan(t) + t),
5sin(t) + 5sin(—2arctan(t) +t), ¢t = 0..40]

> plot(Toy_Plot, scaling = constrained, color = black);

We obtain the same plot as in Figure 1.3.
Figure 1.5 is obtained with the following statements:

> Toy_Plot := subs(Rx, Ry, Child_Subst, Soll, omega = 1,
> alpha = arctan(-2)+Pi, a = sqrt(125), R = 5,

> [Toy[1, t = 0..200]):

> plot(Toy_Plot, scaling = constrained, color = black);

Finally we compute the orbit of a variant of the first example. We will consider
the case where the bar is shorter than the radius of the circle, see Figure 1.11.

> Toy_Plot := subs(Rx, Ry, Child_Subst, Sol2, omega = 1,

> alpha = 0, a = 4.95, R =5, [Toy[l, t = 0..40]):

> plot(Toy_Plot, scaling = constrained, color = black);
Note that for the child walking on a straight line there is an analytical solution,
the tractrix, as shown in the first section of this chapter. Let (X, Yy) be the
initial position and (Vj, V;,) the constant velocity vector of the child:



24 W. Gander, S. Bartori, and J. Hrebicek

FiGure 1.11. Toy Orbit for a < R

>a :=’a’: Vx :=’Vx’: Vy := ’Vy’:
> Child_Subst := X(t) = Xo + Vx*t, Y(t) = Yo + Vy*t:
> Das := eval(subs(Child_Subst, Daxial));

Das = g 1) = W) Ve — s 0 O) Ty

> Sol := dsolve(Das, phi(t));

(t+_C1)\JVi? + Vx2> vV + Vx2))

Sol := ¢ (t) = =2 arctan((V:c + tanh( P vy

Repeating the same process as before for the case when the child is walking on
a circle, we obtain again an implicit function for ¢(t).

In general it will not be possible to obtain an analytic solution for the orbit of
the toy. If we consider the child walking on the sine curve, we have to compute
the orbit of the toy numerically. We will do this using M APLE.

>X :=t ->t: Y :=t -> 5xsin(t): a := 10:
> Daxial;

Dazial := % (t) =1/10 sin (¢ (t)) — 1/2 cos (¢ (t)) cos (t)

> F := dsolve({Daxial, phi(0) = Pi/2}, phi(t), numeric);

F := proc(rkf{5_z) ... end

Because the plot is the same as in Figure 1.4 we will not print it here. We
will, however, add a few commands to show the movements dynamically on the
screen. Note that it is not possible to use the animate command for the same
purpose.

We would like to see the movement of the bar, and the trajectory of both
ends of the bar. One end has to move along the sine curve, the second will
describe the computed orbit. We would like to see a movie describing the
process during 7T seconds, as a sequence of N + 1 partial plots.



Chapter 1. The Tractrix and Similar Curves 25

>N :=200: L := a:

> T:=evalf (6*Pi/N*[$0..N]):

> SF := [seq(rhs(F(t)[2]), t = T)]:

> plot(zip((u,v)->[X(u) + Lx*cos(v), Y(u) + L*sin(v)],T,SF));
The last MAPLE commands will display the orbit. For the movie we have to
prepare and store the sequences of plots with increasing number of points.

> with(plots):
> TS := display(seq(plot(

> zip((u,v)->[X(uw)+L*cos(v), Y(u)+L*sin(v)],T[1..j]1,SF[1..31),

> color=blue,thickness=2), j = 1..N+1),insequence=true):

> BS := display(

>  zip((u,v)->plot([[X(w),Y(w)], [X(u)+L*cos(v),Y(u)+L*sin(v)]],

> color=red),T,SF),insequence=true):

> PS := display(seq(plot([seq([X(u),Y(uw)],u=T[1..j]1)],color=black),
> j=1..N+1) ,insequence=true):

The animation 7'S contains information about the orbit. It stores N + 1 partial
plots containing 0 to IV points. The animation BS describes the bar position

for each frame. Finally PS describes the sine trajectory. Its structure is similar
to T'S.
The whole process can now be viewed with the command

> display({TS,BS,PS},view=[-2..20,-5..15]);

References

[1] E. HAIRER, S.P. NORSETT and G. WANNER, Solving Ordinary Differential
Equations I, Springer-Verlag Berlin Heidelberg, 1987.

[2] H. HEUSER, Gewohnliche Differentialgleichungen, B. G. Teubner, Stuttgart,
1989.



